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SYNTHETIC STUDIES OF 1,7-DIOXASPIR0[5.5]UNDECAN-4-ONES 

D.R. Williams* and B.A. Barner 

Department of Chemistry, Indiana University, Bloomington, Indiana 47405 

Summary: A strategy for preparation of functionalized 1,7-dioxaspiro[5.5]undecanes has been ex- 

plored using S-diketone precursors. 

Discovery of the milbemycin-avermectin family of antibiotics has stimulated widespread 

interest in the chemistry of these agents owing to their potent and specific pesticidal activity.' 

In connection with our efforts* toward the total synthesis of milbemycin B3 ,&, we have sought an 

effective strategy for formation of the 1,7-dioxaspiro[5.5]undecane x. Herein we describe the 

utility of 1,3-diketone intermediates as precursors to this spiroketal moiety. 

Milbemycin B3 1 - 

Our plan recognized a cascading cyclization to be initiated by deprotection of the secondary 

alcohol at C-8 of the S-diketone as shown below. 3 The resulting stereochemistry of the spirocenter 

(C-6) was anticipated by thermodynamic control with each of the oxygens in pseudoaxial dispositions 

in accord with the anomeric effect.lt Likewise the requisite side chain (R) would occupy a pseudo- 

equatorial position establishing the stereochemistry at c-z. 
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Results are illustrated in Scheme 1.5 Addition of methyllithium (1 equiv, THF, -78 'C) to 

trans-4,5-dimethylvalerolactone ,& and subsequent silyl ether protection (Cl-SitBuMe2, CH*Cl2, 

DMAP) gave methyl ketone $ in 65% yield for the two steps.6 Kinetic deprotonation (LDA, 2 equivs, 

THF, HMPA, -78 'C) and reaction with trans-4-benzyloxycrotonyl chloride 2 afforded the B-diketone 

adduct which was shown to exist primarily in the enolized form $, (>90% by NMR and IR). Unfortun- 

ately yields of 30 to 35% are generally obtained with 60 to 70% recovered methyl ketone 4. None 

of the usual techniques, such as lower reaction temperatures, additional quantities of bases, or 

inverse addition, gave improved yields of & and no other isolable products were formed.' Attempts 

for direct acylation, promoted by Lewis acids, utilizing the corresponding trimethylsilyl enol 

ether of $ and acid chloride 2 also failed in this case.a 

The desired cyclization was attempted by basic fluoride initiation (n-Bu4N+F-, THF); however, 

the higher temperatures required for deprotection also caused complete decomposition. Under acid 

conditions (H+ Bio-Rad AGSOW-X4 exchange resin, toluene at 100 OC) partial cyclization of ,Q af- 

forded x which proved stable to silica gel chromatography. However, a two-phase reaction of $, with 

aqueous 20% fluoroboric acid in ether (2 ml acid with 5 ml Et20) at reflux with vigorous stirring 

for 24 hr gave the desired spiroketal e in 40% yield as a mixture of isomers at C-2 (ratio 60:40). 

All starting diketone was consumed with some decomposition to polar materials. 
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Stereochemical assignments at C-2 and C-6 followed from separation of the corresponding 

alcohols 2 and &Q (silica gel chromatography).g Epimer &I, bearing anaxial hydroxymethyl substi- 

tuent, was easily isomerized with lithium hydroxide (THF, H20, MeOH, 22'C, 15 min) affording a 

thermodynamic equilibrium of spiroketals a and JJ (ratio 2:1), each of which were fully character- 

ized following chromatography (silica gel). The equilibration is complicated by recognition of a 

second conformer J.,& which is available by inversion of the tetrahydropyranone (ring A) of epimer 

G!* Thus, conformer @,,a, while relieving the 1,3-diaxial interaction of the hydroxymethyl substi- 

tuent, can maintain only a single anomeric stabilization. Note the tetrahydropyran moiety (ring B) 

is highly biased in a single conformation by preference of the vicinal methyl groups. Likewise, 

diastereomer G has similar conformational considerations, and it is not surprising that epimers ,$J 

(and Q&) and ,Q (and &) offer similar thermodynamic stabilities. However, ,J_& is not observed in 

the acid-catalyzed cyclization of &, and spiroketal 2 is unchanged under these basic conditions. 

Moreover, neither JJ, nor ,Q undergoes isomerization to ,?, which is obviously the most thermodynami- 

cally favorable situation. Observations suggest a stereoelectronic requirement for an anti-align- 

ment with selective removal of Ha in @_,, allowing for elimination to an intermediate dihydropyra- 

none with conjugate addition of hydroxyl reoccurring from the opposite face of the unsaturated 

system providing J,&. The corresponding elimination to an intermediate analogous to ketone J_ does 

not take place.5 
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Further investigations of these strategies for natural product synthesis are underway. 
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